
1© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_1

CHAPTER 1

Introduction to Data
Science with Python
The amount of digital data that exists is growing at a rapid rate, doubling

every two years, and changing the way we live. It is estimated that by 2020,

about 1.7MB of new data will be created every second for every human

being on the planet. This means we need to have the technical tools,

algorithms, and models to clean, process, and understand the available

data in its different forms for decision-making purposes. Data science is

the field that comprises everything related to cleaning, preparing, and

analyzing unstructured, semistructured, and structured data. This field

of science uses a combination of statistics, mathematics, programming,

problem-solving, and data capture to extract insights and information

from data.

�The Stages of Data Science
Figure 1-1 shows different stages in the field of data science. Data scientists

use programming tools such as Python, R, SAS, Java, Perl, and C/C++

to extract knowledge from prepared data. To extract this information,

they employ various fit-to-purpose models based on machine leaning

algorithms, statistics, and mathematical methods.

https://doi.org/10.1007/978-1-4842-4109-7_1

2

Data science algorithms are used in products such as internet

search engines to deliver the best results for search queries in less time,

in recommendation systems that use a user’s experience to generate

recommendations, in digital advertisements, in education systems, in

healthcare systems, and so on. Data scientists should have in-depth

knowledge of programming tools such as Python, R, SAS, Hadoop

platforms, and SQL databases; good knowledge of semistructured formats

such as JSON, XML, HTML. In addition to the knowledge of how to work

with unstructured data.

�Why Python?
Python is a dynamic and general-purpose programming language that is

used in various fields. Python is used for everything from throwaway scripts

to large, scalable web servers that provide uninterrupted service 24/7.

It is used for GUI and database programming, client- and server-side

Figure 1-1.  Data science project stages

Chapter 1 Introduction to Data Science with Python

3

web programming, and application testing. It is used by scientists writing

applications for the world’s fastest supercomputers and by children first

learning to program. It was initially developed in the early 1990s by Guido

van Rossum and is now controlled by the not-for-profit Python Software

Foundation, sponsored by Microsoft, Google, and others.

The first-ever version of Python was introduced in 1991. Python is now

at version 3.x, which was released in February 2011 after a long period

of testing. Many of its major features have also been backported to the

backward-compatible Python 2.6, 2.7, and 3.6.

�Basic Features of Python
Python provides numerous features; the following are some of these

important features:

•	 Easy to learn and use: Python uses an elegant syntax,

making the programs easy to read. It is developer-

friendly and is a high-level programming language.

•	 Expressive: The Python language is expressive, which

means it is more understandable and readable than

other languages.

•	 Interpreted: Python is an interpreted language. In other

words, the interpreter executes the code line by line. This

makes debugging easy and thus suitable for beginners.

•	 Cross-platform: Python can run equally well on

different platforms such as Windows, Linux, Unix,

Macintosh, and so on. So, Python is a portable

language.

•	 Free and open source: The Python language is freely

available at www.python.org. The source code is also

available.

Chapter 1 Introduction to Data Science with Python

http://www.python.org

4

•	 Object-oriented: Python is an object-oriented language

with concepts of classes and objects.

•	 Extensible: It is easily extended by adding new modules

implemented in a compiled language such as C or C++,

which can be used to compile the code.

•	 Large standard library: It comes with a large standard

library that supports many common programming

tasks such as connecting to web servers, searching text

with regular expressions, and reading and modifying

files.

•	 GUI programming support: Graphical user interfaces

can be developed using Python.

•	 Integrated: It can be easily integrated with languages

such as C, C++, Java, and more.

�Python Learning Resources
Numerous amazing Python resources are available to train Python

learners at different learning levels. There are so many resources out

there, though it can be difficult to know how to find all of them. The

following are the best general Python resources with descriptions of what

they provide to learners:

–– �Python Practice Book is a book of Python exercises to

help you learn the basic language syntax. (See https://

anandology.com/python-practice-book/index.html.)

–– Agile Python Programming: Applied for Everyone provides a

practical demonstration of Python programming as an

agile tool for data cleaning, integration, analysis, and

visualization fits for academics, professionals, and

Chapter 1 Introduction to Data Science with Python

https://anandology.com/python-practice-book/index.html
https://anandology.com/python-practice-book/index.html

5

researchers. (See http://www.lulu.com/shop/ossama-

embarak/agile-python-programming-applied-for-

everyone/paperback/product-23694020.html.)

–– “A Python Crash Course” gives an awesome overview of

the history of Python, what drives the programming

community, and example code. You will likely need to

read this in combination with other resources to really let

the syntax sink in, but it’s a great resource to read several

times over as you continue to learn. (See https://www.

grahamwheeler.com/posts/python-crash-course.html.)

–– “A Byte of Python” is a beginner’s tutorial for the Python

language. (See https://python.swaroopch.com/.)

–– The O’Reilly book Think Python: How to Think Like a

Computer Scientist is available in HTML form for free

on the Web. (See https://greenteapress.com/wp/

think-python/.)

–– Python for You and Me is an approachable book with

sections for Python syntax and the major language

constructs. The book also contains a short guide at the

end teaching programmers to write their first Flask web

application. (See https://pymbook.readthedocs.io/

en/latest/.)

–– Code Academy has a Python track for people completely

new to programming. (See www.codecademy.com/

catalog/language/python.)

–– Introduction to Programming with Python goes over

the basic syntax and control structures in Python. The

free book has numerous code examples to go along

with each topic. (See www.opentechschool.org/.)

Chapter 1 Introduction to Data Science with Python

https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.grahamwheeler.com/posts/python-crash-course.html
https://www.grahamwheeler.com/posts/python-crash-course.html
https://python.swaroopch.com/
https://greenteapress.com/wp/think-python/
https://greenteapress.com/wp/think-python/
https://pymbook.readthedocs.io/en/latest/
https://pymbook.readthedocs.io/en/latest/
https://www.codecademy.com/catalog/language/python
https://www.codecademy.com/catalog/language/python
https://www.opentechschool.org/

6

–– Google has a great compilation of material you should

read and learn from if you want to be a professional

programmer. These resources are useful not only for

Python beginners but for any developer who wants to

have a strong professional career in software. (See

techdevguide.withgoogle.com.)

–– Looking for ideas about what projects to use to learn to

code? Check out the five programming projects for

Python beginners at knightlab.northwestern.edu.

–– There’s a Udacity course by one of the creators of

Reddit that shows how to use Python to build a blog.

It’s a great introduction to web development concepts.

(See mena.udacity.com.)

�Python Environment and Editors
Numerous integrated development environments (IDEs) can be used for

creating Python scripts.

�Portable Python Editors (No Installation
Required)
These editors require no installation:

Azure Jupyter Notebooks: The open source Jupyter

Notebooks was developed by Microsoft as an

analytic playground for analytics and machine

learning.

Chapter 1 Introduction to Data Science with Python

https://techdevguide.withgoogle.com
https://knightlab.northwestern.edu
https://mena.udacity.com

7

Python(x,y): Python(x,y) is a free scientific and

engineering development application for numerical

computations, data analysis, and data visualization

based on the Python programming language, Qt

graphical user interfaces, and Spyder interactive

scientific development environment.

WinPython: This is a free Python distribution for the

Windows platform; it includes prebuilt packages for

ScientificPython.

Anaconda: This is a completely free enterprise-

ready Python distribution for large-scale data

processing, predictive analytics, and scientific

computing.

PythonAnywhere: PythonAnywhere makes it easy to

create and run Python programs in the cloud. You

can write your programs in a web-based editor or

just run a console session from any modern web

browser.

Anaconda Navigator: This is a desktop

graphical user interface (GUI) included in the

Anaconda distribution that allows you to launch

applications and easily manage Anaconda

packages (as shown in Figure 1-2), environments,

and channels without using command-line

commands. Navigator can search for packages

on the Anaconda cloud or in a local Anaconda

repository. It is available for Windows, macOS,

and Linux.

Chapter 1 Introduction to Data Science with Python

8

The following sections demonstrate how to set up and use Azure

Jupyter Notebooks.

�Azure Notebooks
The Azure Machine Learning workbench supports interactive data science

experimentation through its integration with Jupyter Notebooks.

Azure Notebooks is available for free at https://notebooks.azure.

com/. After registering and logging into Azure Notebooks, you will get a

menu that looks like this:

Figure 1-2.  Anaconda Navigator

Chapter 1 Introduction to Data Science with Python

https://notebooks.azure.com/
https://notebooks.azure.com/

9

Once you have created your account, you can create a library for

any Python project you would like to start. All libraries you create can be

displayed and accessed by clicking the Libraries link.

Let’s create a new Python script.

	 1.	 Create a library.

Click New Library, enter your library details, and click

Create, as shown here:

A new library is created, as shown in Figure 1-3.

Chapter 1 Introduction to Data Science with Python

10

	 2.	 Create a project folder container.

Organizing the Python library scripts is important.

You can create folders and subfolders by selecting

+New from the ribbon; then for the item type select

Folder, as shown in Figure 1-3.

Figure 1-3.  Creating a folder in an Azure project

	 3.	 Create a Python project.

Move inside the created folder and create a new Python project.

Chapter 1 Introduction to Data Science with Python

11

Your project should look like this:

	 4.	 Write and run a Python script.

Open the Created Hello World script by clicking it, and start writing

your Python code, as shown in Figure 1-4.

Chapter 1 Introduction to Data Science with Python

12

In Figure 1-4, all the green icons show the options that can be

applied on the running file. For instance, you can click + to add new

lines to your file script. Also, you can save, cut, and move lines up and

down. To execute any segment of code, press Ctrl+Enter, or click Run

on the ribbon.

Figure 1-4.  A Python script file on Azure

Chapter 1 Introduction to Data Science with Python

13

�Offline and Desktop Python Editors
There are many offline Python IDEs such as Spyder, PyDev via Eclipse,

NetBeans, Eric, PyCharm, Wing, Komodo, Python Tools for Visual Studio,

and many more.

The following steps demonstrate how to set up and use Spyder. You

can download Anaconda Navigator and then run the Spyder software, as

shown in Figure 1-5.

On the left side, you can write Python scripts, and on the right side you

can see the executed script in the console.

�The Basics of Python Programming
This section covers basic Python programming.

Figure 1-5.  Python Spyder IDE

Chapter 1 Introduction to Data Science with Python

14

�Basic Syntax
A Python identifier is a name used to identify a variable, function, class,

module, or other object in the created script. An identifier starts with a

letter from A to Z or from a to z or an underscore (_) followed by zero or

more letters, underscores, and digits (0 to 9).

Python does not allow special characters such as @, $, and % within

identifiers. Python is a case-sensitive programming language. Thus,

Manpower and manpower are two different identifiers in Python.

The following are the rules for naming Python identifiers:

•	 Class names start with an uppercase letter. All other

identifiers start with a lowercase letter.

•	 Starting an identifier with a single leading underscore

indicates that the identifier is private.

•	 Starting an identifier with two leading underscores

indicates a strongly private identifier.

•	 If the identifier also ends with two trailing underscores,

the identifier is a language-defined special name.

The help? method can be used to get support from the Python user

manual, as shown in Listing 1-1.

Listing 1-1.  Getting Help from Python

In [3]: help?

Signature: help(*args, **kwds)

Type: _Helper

String form: Type help() for interactive help, or help(object)

for help about object.

Namespace: Python builtin

Chapter 1 Introduction to Data Science with Python

15

File: ~/anaconda3_501/lib/python3.6/_sitebuiltins.py

Docstring:

Define the builtin 'help'.

This is a wrapper around pydoc.help that provides a helpful

message

when 'help' is typed at the Python interactive prompt.

Calling help() at the Python prompt starts an interactive help

session.

Calling help(thing) prints help for the python object 'thing'.

The smallest unit inside a given Python script is known as a token,

which represents punctuation marks, reserved words, and each individual

word in a statement, which could be keywords, identifiers, literals, and

operators.

Table 1-1 lists the reserved words in Python. Reserved words are the

words that are reserved by the Python language already and can’t be

redefined or declared by the user.

Table 1-1.  Python Reserved Keywords

and exec not continue global with yield in

assert finally or def if return else is

break for pass except lambda while try

class from print del import raise elif

�Lines and Indentation

Line indentation is important in Python because Python does not depend

on braces to indicate blocks of code for class and function definitions

or flow control. Therefore, a code segment block is denoted by line

indentation, which is rigidly enforced, as shown in Listing 1-2.

Chapter 1 Introduction to Data Science with Python

16

Listing 1-2.  Line Indentation Syntax Error

In [4]:age, mark, code=10,75,"CIS2403"

 print (age)

 print (mark)

 print (code)

File "<ipython-input-4-5e544bb51da0>", line 4

print (code)

IndentationError: unexpected indent

�Multiline Statements

Statements in Python typically end with a new line. But a programmer

can use the line continuation character (\) to denote that the line should

continue, as shown in Listing 1-3. Otherwise, a syntax error will occur.

Listing 1-3.  Multiline Statements

In [5]:TV=15

 Mobile=20 Tablet = 30

total = TV +

Mobile +

 Tablet

print (total)

File "<ipython-input-5-68bc7095f603>", line 5

total = TV +

SyntaxError: invalid syntax

The following is the correct syntax:

In [6]: TV=15

 Mobile=20

 Tablet = 30

 total = TV + \

Chapter 1 Introduction to Data Science with Python

17

 Mobile + \

 Tablet

 print (total)

65

The code segment with statements contained within the [], {}, or ()

brackets does not need to use the line continuation character, as shown in

Listing 1-4.

Listing 1-4.  Statements with Quotations

In [7]: days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

print (days)

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

�Quotation Marks in Python

Python accepts single ('), double ("), and triple (''' or """) quotes to

denote string literals, as long as the same type of quote starts and ends the

string. However, triple quotes are used to span the string across multiple

lines, as shown in Listing 1-5.

Listing 1-5.  Quotation Marks in Python

In [8]:sms1 = 'Hellow World'

 sms2 = "Hellow World"

 sms3 = """ Hellow World"""

 sms4 = """ Hellow

 World"""

 print (sms1)

 print (sms2)

 print (sms3)

 print (sms4)

Chapter 1 Introduction to Data Science with Python

18

Hellow World

Hellow World

Hellow World

Hellow

World

�Multiple Statements on a Single Line

Python allows the use of \n to split line into multiple lines. In addition,

the semicolon (;) allows multiple statements on a single line if neither

statement starts a new code block, as shown in Listing 1-6.

Listing 1-6.  The Use of the Semicolon and New Line Delimiter

In [9]: TV=15; name="Nour"; print (name); print ("Welcome

to\nDubai Festival 2018")

Nour

Welcome to

Dubai Festival 2018

�Read Data from Users

The line code segment in Listing 1-7 prompts the user to enter a name and

age, converts the age into an integer, and then displays the data.

Listing 1-7.  Reading Data from the User

In [10]:name = input("Enter your name ")

 age = int (input("Enter your age "))

 print ("\nName =", name); print ("\nAge =", age)

Chapter 1 Introduction to Data Science with Python

19

Enter your name Nour

Enter your age 12

Name = Nour

Age = 12

�Declaring Variables and Assigning Values
There is no restriction to declaring explicit variables in Python. Once you

assign a value to a variable, Python considers the variable according to

the assigned value. If the assigned value is a string, then the variable is

considered a string. If the assigned value is a real, then Python considers

the variable as a double variable. Therefore, Python does not restrict you

to declaring variables before using them in the application. It allows you to

create variables at the required time.

Python has five standard data types that are used to define the

operations possible on them and the storage method for each of them.

•	 Number

•	 String

•	 List

•	 Tuple

•	 Dictionary

The equal (=) operator is used to assign a value to a variable, as shown

in Listing 1-8.

Chapter 1 Introduction to Data Science with Python

20

Listing 1-8.  Assign Operator

In [11]: age = 11

 name ="Nour"

 tall=100.50

In [12]: print (age)

 print (name)

 print (tall)

11

Nour

100.5

�Multiple Assigns

Python allows you to assign a value to multiple variables in a single

statement, which is also known as multiple assigns. You can assign a single

value to multiple variables or assign multiple values to multiple variables,

as shown in Listing 1-9.

Listing 1-9.  Multiple Assigns

In [13]:age= mark = code =25

 print (age)

 print (mark)

 print (code)

25

25

25

In [14]:age, mark, code=10,75,"CIS2403"

 print (age)

 print (mark)

 print (code)

Chapter 1 Introduction to Data Science with Python

21

10

75

CIS2403

�Variable Names and Keywords

A variable is an identifier that allocates specific memory space and

assigns a value that could change during the program runtime. Variable

names should refer to the usage of the variable, so if you want to create

a variable for student age, then you can name it as age or student_age.

There are many rules and restrictions for variable names. It’s not allowed

to use special characters or white spaces in variable naming. For instance,

variable names shouldn’t start with any special character and shouldn’t

be any of the Python reserved keywords. The following example shows

incorrect naming: {?age, 1age, age student, and, if, 1_age, etc}.

The following shows correct naming for a variable: {age, age1, age_1,

if_age, etc}.

�Statements and Expressions

A statement is any unit of code that can be executed by a Python

interpreter to get a specific result or perform a specific task. A program

contains a sequence of statements, each of which has a specific purpose

during program execution. The expression is a combination of values,

variables, and operators that are evaluated by the interpreter to do a

specific task, as shown in Listing 1-10.

Listing 1-10.  Expression and Statement Forms

In [16]:# Expressions

 x=0.6 # Statement

 x=3.9 * x * (1-x) # Expressions

 print (round(x, 2))

0.94

Chapter 1 Introduction to Data Science with Python

22

�Basic Operators in Python
Operators are the constructs that can manipulate the value of operands. Like

different programming languages, Python supports the following operators:

•	 Arithmetic operators

•	 Relational operators

•	 Assign operators

•	 Logical operators

•	 Membership operators

•	 Identity operators

•	 Bitwise operators

�Arithmetic Operators

Table 1-2 shows examples of arithmetic operators in Python.

Table 1-2.  Python Arithmetic Operators

Operators Description Example Output

// Performs floor division (gives the integer

value after division)

print (13//5) 2

+ Performs addition print (13+5) 18

- Performs subtraction print (13-5) 8

* Performs multiplication print (2*5) 10

/ Performs division print (13/5) 2.6

% Returns the remainder after division

(modulus)

print (13%5) 3

** Returns an exponent (raises to a power) print (2**3) 8

Chapter 1 Introduction to Data Science with Python

23

�Relational Operators

Table 1-3 shows examples of relational operators in Python.

Table 1-3.  Python Relational Operators

Operators Description Example Output

< Less than print (13<5) False

> Greater than print (13>5) True

<= Less than or equal to print (13<=5) False

>= Greater than or equal to print (2>=5) False

== Equal to print (13==5) False

!= Not equal to print (13! =5) True

�Assign Operators

Table 1-4 shows examples of assign operators in Python.

Table 1-4.  Python Assign Operators

Operators Description Example Output

= Assigns x=10

print (x)

10

/= Divides and assigns x=10; x/=2

print (x)

5.0

+= Adds and assigns x=10; x+=7

print (x)

17

-= Subtracts and assigns x=10; x-=6

print (x)

4

(continued)

Chapter 1 Introduction to Data Science with Python

24

�Logical Operators

Table 1-5 shows examples of logical operators in Python.

Table 1-5.  Python Logical Operators

Operators Description Example Output

and Logical AND (when both conditions

are true, the output will be true)

x=10>5 and 4>20

print (x)

False

or Logical OR (if any one condition

is true, the output will be true)

x=10>5 or 4>20

print (x)

True

not Logical NOT (complements the

condition; i.e., reverses it)

x=not (10<4)

print (x)

True

Operators Description Example Output

= Multiplies and assigns x=10; x=5

print (x)

50

%= Modulus and assigns x=13; x%=5

print (x)

3

= Exponent and assigns x=10; x=3

print(x)

1000

//= Floor division and assigns x=10; x//=2

print(x)

5

Table 1-4.  (continued)

A Python program is a sequence of Python statements that have

been crafted to do something. It can be one line of code or thousands of

code segments written to perform a specific task by a computer. Python

statements are executed immediately and do not wait for the entire

Chapter 1 Introduction to Data Science with Python

25

program to be executed. Therefore, Python is an interpreted language that

executes line per line. This differs from other languages such as C#, which

is a compiled language that needs to handle the entire program.

�Python Comments
There are two types of comments in Python: single-line comments and

multiline comments.

The # symbol is used for single-line comments.

Multiline comments can be given inside triple quotes, as shown in

Listing 1-11.

Listing 1-11.  Python Comment Forms

In [18]: # Python single line comment

In [19]: ''' This

 Is

 Multi-line comment'''

�Formatting Strings
The Python special operator % helps to create formatted output. This

operator takes two operands, which are a formatted string and a value. The

following example shows that you pass a string and the 3.14259 value in

string format. It should be clear that the value can be a single value, a tuple

of values, or a dictionary of values.

In [20]: print ("pi=%s"%"3.14159")

pi=3.14159

Chapter 1 Introduction to Data Science with Python

26

�Conversion Types
You can convert values using different conversion specifier syntax, as

summarized in Table 1-6.

Table 1-6.  Conversion Syntax

Syntax Description

%c Converts to a single character

%d, %i Converts to a signed decimal integer or long integer

%u Converts to an unsigned decimal integer

%e, %E Converts to a floating point in exponential notation

%f Converts to a floating point in fixed-decimal notation

%g Converts to the value shorter of %f and %e

%G Converts to the value shorter of %f and %E

%o Converts to an unsigned integer in octal

%r Converts to a string generated with repr()

%s Converts to a string using the str() function

%x, %X Converts to an unsigned integer in hexadecimal

For example, the conversion specifier %s says to convert the value to

a string. Therefore, to print a numerical value inside string output, you

can use, for instance, print("pi=%s" % 3.14159). You can use multiple

conversions within the same string, for example, to convert into double,

float, and so on.

In [1]:print("The value of %s is = %02f" % ("pi", 3.14159))

The value of pi is = 3.141590

Chapter 1 Introduction to Data Science with Python

27

You can use a dot (.) followed by a positive integer to specify the

precision. In the following example, you can use a tuple of different data

types and inject the output in a string message:

In [21]:print ("Your name is %s, and your height is %.2f while

your weight is %.2d" % ('Ossama', 172.156783, 75.56647))

Your name is Ossama, and your height is 172.16 while your

weight is 75

In the previous example, you can see that %.2f is replaced with the

value 172.16 with two decimal fractions after the decimal point, while %2d

is used to display decimal values only but in a two-digit format.

You can display values read directly from a dictionary, as shown next,

where %(name)s says to take as a string the dictionary value of the key Name

and %(height).2f says to take it as a float with two fraction values, which

are the dictionary values of the key height:

In [23]:print ("Hi %(Name)s, your height is %(height).2f"

%{'Name':"Ossama", 'height': 172.156783})

Hi Ossama, your height is 172.16

�The Replacement Field, {}
You can use the replacement field, {}, as a name (or index). If an index is

provided, it is the index of the list of arguments provided in the field. It’s

not necessary to have indices with the same sequence; they can be in a

random order, such as indices 0, 1, and 2 or indices 2, 1, and 0.

In [24]:x = "price is"

 print ("{1} {0} {2}".format(x, "The", 1920.345))

The price is 1920.345

Chapter 1 Introduction to Data Science with Python

28

Also, you can use a mix of values combined from lists, dictionaries,

attributes, or even a singleton variable. In the following example, you

will create a class called A(), which has a single variable called x that is

assigned the value 9.

Then you create an instance (object) called w from the class A().

Then you print values indexed from variable {0} and the {1[2]} value

from the list of values ["a," "or," "is"], where 1 refers to the index

of printing and 2 refers to the index in the given list where the string

index is 0. {2[test]} refers to index 2 in the print string and reads

its value from the passed dictionary from the key test. Finally, {3.x}

refers to the third index, which takes its value from w, which is an

instance of the class A().

In [34]:class A():x=9 w=A()

 �print ("{0} {1[2]} {2[test]} {3.x}".format("This", ["a",

"or", "is"], {"test": "another"},w))

This is another 9

In [34]:print ("{1[1]} {0} {1[2]} {2[test]}{3.x}".

format("This", ["a", "or", "is"], {"test": "another"},w))

or This is another 9

�The Date and Time Module
Python provides a time package to deal with dates and times. You can

retrieve the current date and time and manipulate the date and time using

the built-in methods.

The example in Listing 1-12 imports the time package and calls its

.localtime() function to retrieve the current date and time.

Chapter 1 Introduction to Data Science with Python

29

Listing 1-12.  Time Methods

In [42]:import time localtime = time.asctime(time.

localtime(time.time()))

print ("Formatted time :", localtime)

print(time.localtime())

print (time.time())

Formatted time : Fri Aug 17 19:12:07 2018

time.struct_time(tm_year=2018, tm_mon=8, tm_mday=17,

tm_hour=19, tm_min=12, tm_sec=7, tm_wday=4, tm_yday=229,

tm_isdst=0)

1534533127.8304486

�Time Module Methods
Python provides various built-in time functions, as in Table 1-7, that can be

used for time-related purposes.

Table 1-7.  Built-in Time Methods

Methods Description

time() Returns time in seconds since January 1, 1970.

asctime(time) Returns a 24-character string, e.g., Sat Jun 16 21:27:18 2018.

sleep(time) Used to stop time for the given interval of time.

strptime

(String,format)

Returns a tuple with nine time attributes. It receives a string

of date and a format.

time.struct_time(tm_year=2018, tm_mon=6,

tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0,

tm_wday=3, tm_yday=177, tm_isdst=-1)

(continued)

Chapter 1 Introduction to Data Science with Python

30

Table 1-8.  Built-in Calendar Module Functions

Methods Description

prcal(year) Prints the whole calendar of the year.

f irstweekday() Returns the first weekday. It is by default 0,

which specifies Monday.

isleap(year) Returns a Boolean value, i.e., true or false.

Returns true in the case the given year is a leap

year; otherwise, false.

monthcalendar(year,month)

Returns the given month with each week as

one list.

leapdays(year1,year2) Returns the number of leap days from year1

to year2.

prmonth(year,month) Prints the given month of the given year.

Table 1-7.  (continued)

Methods Description

�gtime()/

gtime(sec)

Returns struct_time, which contains nine time attributes.

mktime() Returns the seconds in floating point since the epoch.

�strftime

(format)/

strftime

(format,time)

Returns the time in a particular format. If the time is not

given, the current time in seconds is fetched.

�Python Calendar Module
Python provides a calendar module, as in Table 1-8, which provides many

functions and methods to work with a calendar.

Chapter 1 Introduction to Data Science with Python

31

You can use the Calendar package to display a 2018 calendar as shown

here:

In [45]:import calendar

 calendar.prcal(2018)

Chapter 1 Introduction to Data Science with Python

32

�Fundamental Python Programming
Techniques
This section demonstrates numerous Python programming syntax

structures.

�Selection Statements
The if statement is used to execute a specific statement or set of

statements when the given condition is true. There are various forms of if

structures, as shown in Table 1-9.

The if statement is used to make decisions based on specific

conditions occurring during the execution of the program. An action or set

of actions is executed if the outcome is true or false otherwise. Figure 1-6

shows the general form of a typical decision-making structure found in

most programming languages including Python. Any nonzero and non-

null values are considered true in Python, while either zero or null values

are considered false.

Table 1-9.  if Statement Structure

Form if statement if-else Statement Nested if Statement

Structure if(condition):

statements

if(condition):

statements

else:

statements

if (condition):

statements

elif (condition):

statements

else:

statements

Chapter 1 Introduction to Data Science with Python

33

Listing 1-13 demonstrates two examples of a selection statement,

remember the indentation is important in the Python structure. The first

block shows that the value of x is equal to 5; hence, the condition is testing

whether x equals 5 or not. Therefore, the output implements the statement

when the condition is true.

Listing 1-13.  The if-else Statement Structure

In [13]:#Comparison operators

 x=5

 if x==5:

 print ('Equal 5')

elif x>5:

 print ('Greater than 5')

elif x<5:

 print ('Less than 5')

Equal 5

Figure 1-6.  Selection statement structure

Chapter 1 Introduction to Data Science with Python

34

In [14]:year=2000

 if year%4==0:

 print("Year(", year ,")is Leap")

else:

 print (year , "Year is not Leap")

Year(2000)is Leap

Indentation determines which statement should be executed. In

Listing 1-14, the if statement condition is false, and hence the outer print

statement is the only executed statement.

Listing 1-14.  Indentation of Execution

In [12]:#Indentation

 x=2

 if x>2:

 print ("Bigger than 2")

 print (" X Value bigger than 2")

 print ("Now we are out of if block\n")

Now we are out of if block

The nested if statement is an if statement that is the target of another

if statement. In other words, a nested if statement is an if statement

inside another if statement, as shown in Listing 1-15.

Listing 1-15.  Nested Selection Statements

In [2]:a=10

 if a>=20:

 print ("Condition is True")

else:

 if a>=15:

 print ("Checking second value")

Chapter 1 Introduction to Data Science with Python

35

 else:

 print ("All Conditions are false")

All Conditions are false

�Iteration Statements
There are various iteration statement structures in Python. The for

loop is one of these structures; it is used to iterate the elements of

a collection in the order that they appear. In general, statements

are executed sequentially, where the first statement in a function is

executed first, followed by the second, and so on. There may be a

situation when you need to execute a block of code several numbers

of times.

Control structures allow you to execute a statement or group of

statements multiple times, as shown by Figure 1-7.

Figure 1-7.  A loop statement

Chapter 1 Introduction to Data Science with Python

36

Table 1-10 demonstrates different forms of iteration statements. The

Python programming language provides different types of loop statements

to handle iteration requirements.

Python provides various support methods for iteration statements

where it allows you to terminate the iteration, skip a specific iteration,

or pass if you do not want any command or code to execute. Table 1-11

summarizes control statements within the iteration execution.

Table 1-10.  Iteration Statement Structure

1 for loop
Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

2 Nested loops
You can use one or more loop inside any another while, for, or do..

while loop.

3 while loop
Repeats a statement or group of statements while a given condition is true.

It tests the condition before executing the loop body.

4 do {....} while ()

Repeats a statement or group of statements while a given condition is true.

It tests the condition after executing the loop body.

Chapter 1 Introduction to Data Science with Python

37

The range() statement is used with for loop statements where you

can specify one value. For example, if you specify 4, the loop statement

starts from 1 and ends with 3, which is n-1. Also, you can specify

the start and end values. The following examples demonstrate loop

statements.

Listing 1-16 displays all numerical values starting from 1 up to n-1,

where n=4.

Listing 1-16.  for Loop Statement

In [23]:# use the range statement

 for a in range (1,4):

 print (a)

1

2

3

Listing 1-17 displays all numerical values starting from 0 up to n-1,

where n=4.

Table 1-11.  Loop Control Statements

1 Break statement
Terminates the loop statement and transfers execution to the statement

immediately following the loop.

2 Continue statement
Causes the loop to skip the remainder of its body and immediately retests

its condition prior to reiterating.

3 Pass statement
The pass statement is used when a statement is required syntactically but

you do not want any command or code to execute.

Chapter 1 Introduction to Data Science with Python

38

Listing 1-17.  Using the range() Method

In [24]:# use the range statement

 for a in range (4):

 print (a)

0

1

2

3

Listing 1-18 displays the while iteration statement.

Listing 1-18.  while Iteration Statement

In [32]:ticket=4

 while ticket>0:

 print ("Your ticket number is ", ticket)

 ticket -=1

Your ticket number is 4

Your ticket number is 3

Your ticket number is 2

Your ticket number is 1

Listing 1-19 iterates all numerical values in a list to find the maximum

value.

Listing 1-19.  Using a Selection Statement Inside a Loop Statement

In [2]:largest = None

 print ('Before:', largest)

 for val in [30, 45, 12, 90, 74, 15]:

if largest is None or val>largest:

 largest = val

 print ("Loop", val, largest)

print ("Largest", largest)

Chapter 1 Introduction to Data Science with Python

39

Before: None

Loop 30 30

Loop 45 45

Loop 90 90

Largest 90

In the previous examples, the first and second iterations used the for

loop with a range statement. In the last example, iteration goes through a

list of elements and stops once it reaches the last element of the iterated

list.

A break statement is used to jump statements and transfer the

execution control. It breaks the current execution, and in the case of an

inner loop, the inner loop terminates immediately. However, a continue

statement is a jump statement that skips execution of current iteration.

After skipping, the loop continues with the next iteration. The pass

keyword is used to execute nothing. The following examples demonstrate

how and when to employ each statement.

�The Use of Break, Continues, and Pass
Statements
Listing 1-20 shows the break, continue, and pass statements.

Listing 1-20.  Break, Continue, and Pass Statements

In [44]:for letter in 'Python3':

 if letter == 'o':

 break

 print (letter)

Chapter 1 Introduction to Data Science with Python

40

P

y

t

h

In [45]: a=0

 while a<=5:

 a=a+1

 if a%2==0:

 continue

 print (a)

 print ("End of Loop")

1

3

5

End of Loop

In [46]: for i in [1,2,3,4,5]:

 if i==3:

 pass

 print ("Pass when value is", i)

 print (i)

1

2

Pass when value is 3

3

4

5

As shown, you can iterate over a list of letters, as shown in Listing 1-20,

and you can iterate over the word Python3 and display all the letters. You

stop iteration once you find the condition, which is the letter o. In addition,

Chapter 1 Introduction to Data Science with Python

41

you can use the pass statement when a statement is required syntactically

but you do not want any command or code to execute. The pass statement

is a null operation; nothing happens when it executes.

�try and except
try and except are used to handle unexpected values where you would

like to validate entered values to avoid error occurrence. In the first

example of Listing 1-21, you use try and except to handle the string “Al

Fayoum,” which is not convertible into an integer, while in the second

example, you use try and except to handle the string 12, which is

convertible to an integer value.

Listing 1-21.  try and except Statements

In [14]: # Try and Except

astr='Al Fayoum'

 errosms=''

try:

 istr=int(astr) # error

except:

 istr=-1

 errosms="\nIncorrect entry"

print ("First Try:", istr , errosms)

First Try: -1

Incorrect entry

In [15]:# Try and Except

 astr='12'

 errosms=' '

 try:

 istr=int(astr) # error

 except:

Chapter 1 Introduction to Data Science with Python

42

 istr=-1

 errosms="\nIncorrect entry"

 print ("First Try:", istr , errosms)

First Try: 12

�String Processing
A string is a sequence of characters that can be accessed by an expression

in brackets called an index. For instance, if you have a string variable

named var1, which maintains the word PYTHON, then var1[1] will return

the character Y, while var1[-2] will return the character O. Python

considers strings by enclosing text in single as well as double quotes.

Strings are stored in a contiguous memory location that can be accessed

from both directions (forward and backward), as shown in the following

example, where

•	 Forward indexing starts with 0, 1, 2, 3, and so on.

•	 Backward indexing starts with -1, -2, -3, -4, and so on.

�String Special Operators

Table 1-12 lists the operators used in string processing. Say you have the

two variables a= 'Hello' and b = 'Python'. Then you can implement the

operations shown in Table 1-12.

Chapter 1 Introduction to Data Science with Python

43

Table 1-12.  String Operators

Operator Description Outputs

+ Concatenation: adds values on either side of the

operator

a + b will give

HelloPython.

* Repetition: creates new strings, concatenating

multiple copies of the same string

a*2 will give

-HelloHello.

[] Slice: gives the character from the given index a[1] will give e.

[:] Range slice: gives the characters from the given

range

a[1:4] will give

ell.

in Membership: returns true if a character exists in

the given string

H in a will give

true.

not in Membership: returns true if a character does not

exist in the given string

M not in a will

give true.

Various symbols are used for string formatting using the operator %.

Table 1-13 gives some simple examples.

Table 1-13.  String Format Symbols

Format Symbol Conversion

%c Character

%s String conversion via

str() prior to formatting

%i Signed decimal integer

%d Signed decimal integer

%u Unsigned decimal integer

(continued)

Chapter 1 Introduction to Data Science with Python

44

Format Symbol Conversion

%o Octal integer

%x Hexadecimal integer

(lowercase letters)

%X Hexadecimal integer

(uppercase letters)

%e Exponential notation (with

lowercase e)

%E Exponential notation (with

uppercase E)

%f Floating-point real number

%g The shorter of %f and %e

%G The shorter of %f and %E

Table 1-13.  (continued)

�String Slicing and Concatenation

String slicing refers to a segment of a string that is extracted using

an index or using search methods. In addition, the len() method is

a built-in function that returns the number of characters in a string.

Concatenation enables you to join more than one string together to form

another string.

The operator [n:m] returns the part of the string from the nth character

to the mth character, including the first but excluding the last. If you omit

the first index (before the colon), the slice starts at the beginning of the

string. In addition, if you omit the second index, the slice goes to the

end of the string. The examples in Listing 1-22 show string slicing and

concatenation using the + operator.

Chapter 1 Introduction to Data Science with Python

45

Listing 1-22.  String Slicing and Concatenation

In [3]:var1 = 'Welcome to Dubai'

 var2 = "Python Programming"

 print ("var1[0]:", var1[0])

 print ("var2[1:5]:", var2[1:5])

 var1[0]: W

 var2[1:5]: ytho

In [5]:st1="Hello"

 st2=' World'

 fullst=st1 + st2

 print (fullst)

Hello World

In [11]:# looking inside strings

 fruit = 'banana'

 letter= fruit[1]

 print (letter)

 index=3

 w = fruit[index-1]

 print (w)

 print (len(fruit))

a

n

6

�String Conversions and Formatting Symbols

It is possible to convert a string value into a float, double, or integer if the

string value is applicable for conversion, as shown in Listing 1-23.

Chapter 1 Introduction to Data Science with Python

46

Listing 1-23.  String Conversion and Format Symbols

In [14]:#Convert string to int

 str3 = '123'

 str3= int (str3)+1

 print (str3)

124

In [15]:#Read and convert data

 name=input('Enter your name: ')

 age=input('Enter your age: ')

 age= int(age) + 1

 print ("Name: %s"% name ,"\t Age:%d"% age)

Enter your name: Omar

Enter your age: 41

Name: Omar Age:42

�Loop Through String

You can use iteration statements to go through a string forward or

backward. A lot of computations involve processing a string one character

at a time. String processing can start at the beginning, select each character

in turn, do something to it, and continue until the end. This pattern of

processing is called a traversal. One way to write a traversal is with a while

loop, as shown in Listing 1-24.

Listing 1-24.  Iterations Through Strings

In [30]:# Looking through string

 fruit ='banana'

 index=0

 while index< len(fruit):

 letter = fruit [index]

Chapter 1 Introduction to Data Science with Python

47

 print (index, letter)

 index=index+1

0 b

1 a

2 n

3 a

4 n

5 a

In [31]:print ("\n Implementing iteration with continue")

 while True:

 line = input('Enter your data>')

 if line[0]=='#':

 continue

 if line =='done':

 break

 print (line)

 print ('End!')

Implementing iteration with continue

Enter your data>Higher Colleges of Technology

Higher Colleges of Technology

Enter your data>#

Enter your data>done

End!

In [32]:print ("\nPrinting in reverse order")

 index=len(fruit)-1

 while index>=0 :

 letter = fruit [index]

 print (index, letter)

 index=index-1

Chapter 1 Introduction to Data Science with Python

48

Printing in reverse order

5 a

4 n

3 a

2 n

1 a

0 b

Letterwise iteration

In [33]:Country='Egypt'

 for letter in Country:

 print (letter)

E

g

y

p

t

You can use iterations as well to count letters in a word or to count

words in lines, as shown in Listing 1-25.

Listing 1-25.  Iterating and Slicing a String

In [2]:# Looking and counting

 word='banana'

 count=0

 for letter in word:

 if letter =='a':

 count +=1

 print ("Number of a in ", word, "is :", count)

Number of a in banana is : 3

Chapter 1 Introduction to Data Science with Python

49

In [3]:# String Slicing

 s="Welcome to Higher Colleges of Technology"

 print (s[0:4])

 print (s[6:7])

 print (s[6:20])

 print (s[:12])

 print (s[2:])

 print (s [:])

 print (s)

Welc

e

e to Higher Co Welcome to H

lcome to Higher Colleges of Technology Welcome to Higher

Colleges of Technology

Welcome to Higher Colleges of Technology

�Python String Functions and Methods

Numerous built-in methods and functions can be used for string

processing; Table 1-14 lists these methods.

Table 1-14.  Built-in String Methods

Method/Function Description

capitalize() Capitalizes the first character of the string.

count(string,

begin,end)

Counts a number of times a substring occurs in a string

between the beginning and end indices.

endswith(suffix,

begin=0,end=n)

Returns a Boolean value if the string terminates with a

given suffix between the beginning and end.

(continued)

Chapter 1 Introduction to Data Science with Python

50

Table 1-14.  (continued)

Method/Function Description

find(substring,

beginIndex,

endIndex)

Returns the index value of the string where the substring is

found between the begin index and the end index.

index(subsring,

beginIndex,

endIndex)

Throws an exception if the string is not found and works

same as the find() method.

isalnum() Returns true if the characters in the string are

alphanumeric (i.e., letters or numbers) and there is at least

one character. Otherwise, returns false.

isalpha() Returns true when all the characters are letters and there

is at least one character; otherwise, false.

isdigit() Returns true if all the characters are digits and there is at

least one character; otherwise, false.

islower() Returns true if the characters of a string are in lowercase;

otherwise, false.

isupper() Returns false if the characters of a string are in uppercase;

otherwise, false.

isspace() Returns true if the characters of a string are white space;

otherwise, false.

len(string) Returns the length of a string.

lower() Converts all the characters of a string to lowercase.

upper() Converts all the characters of a string to uppercase.

startswith(str,

begin=0,end=n)

Returns a Boolean value if the string starts with the given

str between the beginning and end.

(continued)

Chapter 1 Introduction to Data Science with Python

51

Listing 1-26 shows how to use built-in methods to remove white space

from a string, count specific letters within a string, check whether the

string contains another string, and so on.

Listing 1-26.  Implementing String Methods

In [29]:var1 =' Higher Colleges of Technology '

 var2='College'

 var3='g'

 print (var1.upper())

 print (var1.lower())

 print ('WELCOME TO'.lower())

 print (len(var1))

 �print (var1.count(var3, 2, 29)) # find how many g

letters in var1

 print (var2.count(var3))

HIGHER COLLEGES OF TECHNOLOGY

higher colleges of technology

welcome to

Method/Function Description

swapcase() Inverts the case of all characters in a string.

lstrip() Removes all leading white space of a string and can also

be used to remove a particular character from leading

white spaces.

rstrip() Removes all trailing white space of a string and can also

be used to remove a particular character from trailing

white spaces.

Table 1-14.  (continued)

Chapter 1 Introduction to Data Science with Python

52

31

3

1

In [33]:print (var1.endswith('r'))

 print (var1.startswith('O'))

 print (var1.find('h', 0, 29))

 �print (var1.lstrip()) # It removes all leading whitespace

of a string in var1

 �print (var1.rstrip()) # It removes all trailing

whitespace of a string in var1

 �print (var1.strip()) # It removes all leading and

trailing whitespace

 print ('\n')

 print (var1.replace('Colleges', 'University'))

False

False

4

Higher Colleges of Technology

 Higher Colleges of Technology

Higher Colleges of Technology

Higher University of Technology

�The in Operator

The word in is a Boolean operator that takes two strings and returns true if

the first appears as a substring in the second, as shown in Listing 1-27.

Listing 1-27.  The in Method in String Processing

In [43]:var1 =' Higher Colleges of Technology '

 var2='College'

 var3='g'

Chapter 1 Introduction to Data Science with Python

53

 print (var2 in var1)

 print (var2 not in var1)

True

False

�Parsing and Extracting Strings

The find operator returns the index of the first occurrence of a substring

in another string, as shown in Listing 1-28. The atpost variable is used to

maintain a returned index of the substring @ as it appears in the Maindata

string variable.

Listing 1-28.  Parsing and Extracting Strings

In [39]:# Parsing and Extracting strings

 �Maindata = 'From ossama.embarak@hct.ac.ae Sunday

Jan 4 09:30:50 2017' atpost = Maindata.find('@')

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

 print (atpost)

 print (Maindata[:atpost])

 data = Maindata[:atpost]

 name=data.split(' ')

 print (name)

 print (name[1].replace('.', ' ').upper())

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

<<<<<<<<<<<<<<>>>>>>>>>>>>>

19

From ossama.embarak

['From', 'ossama.embarak']

OSSAMA EMBARAK

<<<<<<<<<<<<<<>>>>>>>>>>>>>

Chapter 1 Introduction to Data Science with Python

54

In [41]:# Another way to split strings

 �Maindata = 'From ossama.embarak@hct.ac.ae Sunday

Jan 4 09:30:50 2017'

 name= Maindata[:atpost].replace('From','').upper()

 print (name.replace('.',' ').upper().lstrip())

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

 sppos=Maindata.find(' ', atpost)

 print (sppos)

 print (Maindata[:sppos])

 host = Maindata [atpost + 1 : sppos]

 print (host)

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

OSSAMA EMBARAK

<<<<<<<<<<<<<<>>>>>>>>>>>>>

29

From ossama.embarak@hct.ac.ae

hct.ac.ae

<<<<<<<<<<<<<<>>>>>>>>>>>>>

�Tabular Data and Data Formats
Data is available in different forms. It can be unstructured data,

semistructured data, or structured data. Python provides different

structures to maintain data and to manipulate it such as variables, lists,

dictionaries, tuples, series, panels, and data frames. Tabular data can be

easily represented in Python using lists of tuples representing the records

of the data set in a data frame structure. Though easy to create, these

kinds of representations typically do not enable important tabular data

manipulations, such as efficient column selection, matrix mathematics, or

spreadsheet-style operations. Tabular is a package of Python modules for

working with tabular data. Its main object is the tabarray class, which is a

Chapter 1 Introduction to Data Science with Python

55

data structure for holding and manipulating tabular data. You can put data

into a tabarray object for more flexible and powerful data processing. The

Pandas library also provides rich data structures and functions designed to

make working with structured data fast, easy, and expressive. In addition,

it provides a powerful and productive data analysis environment.

A Pandas data frame can be created using the following constructor:

pandas.DataFrame(data, index, columns, dtype, copy)

A Pandas data frame can be created using various input forms such as

the following:

•	 List

•	 Dictionary

•	 Series

•	 Numpy ndarrays

•	 Another data frame

Chapter 3 will demonstrate the creation and manipulation of the data

frame structure in detail.

�Python Pandas Data Science Library
Pandas is an open source Python library providing high-performance

data manipulation and analysis tools via its powerful data structures. The

name Pandas is derived from “panel data,” an econometrics term from

multidimensional data. The following are the key features of the Pandas library:

•	 Provides a mechanism to load data objects from

different formats

•	 Creates efficient data frame objects with default and

customized indexing

•	 Reshapes and pivots date sets

Chapter 1 Introduction to Data Science with Python

https://doi.org/10.1007/978-1-4842-4109-7_3

56

•	 Provides efficient mechanisms to handle missing data

•	 Merges, groups by, aggregates, and transforms data

•	 Manipulates large data sets by implementing various

functionalities such as slicing, indexing, subsetting,

deletion, and insertion

•	 Provides efficient time series functionality

Sometimes you have to import the Pandas package since the standard

Python distribution doesn’t come bundled with the Pandas module.

A lightweight alternative is to install Numpy using popular the Python

package installer pip. The Pandas library is used to create and process

series, data frames, and panels.

�A Pandas Series

A series is a one-dimensional labeled array capable of holding data of any

type (integer, string, float, Python objects, etc.). Listing 1-29 shows how to

create a series using the Pandas library.

Listing 1-29.  Creating a Series Using the Pandas Library

In [34]:#Create series from array using pandas and numpy

 import pandas as pd

 import numpy as np

 data = np.array([90,75,50,66])

 s = pd.Series(data,index=['A','B','C','D'])

 print (s)

A 90

B 75

C 50

D 66

dtype: int64

Chapter 1 Introduction to Data Science with Python

57

In [36]:print (s[1])

75

In [37]:#Create series from dictionary using pandas

 import pandas as pd

 import numpy as np

 data = {'Ahmed' : 92, 'Ali' : 55, 'Omar' : 83}

 s = pd.Series(data,index=['Ali','Ahmed','Omar'])

 print (s)

Ali 55

Ahmed 92

Omar 83

dtype: int64

In [38]:print (s[1:])

Ahmed 92

Omar 83

dtype: int64

�A Pandas Data Frame

A data frame is a two-dimensional data structure. In other words, data is

aligned in a tabular fashion in rows and columns. In the following table,

you have two columns and three rows of data. Listing 1-30 shows how to

create a data frame using the Pandas library.

Name Age

Ahmed 35

Ali 17

Omar 25

Chapter 1 Introduction to Data Science with Python

58

Listing 1-30.  Creating a Data Frame Using the Pandas Library

In [39]:import pandas as pd

 data = [['Ahmed',35],['Ali',17],['Omar',25]]

 DataFrame1 = pd.DataFrame(data,columns=['Name','Age'])

 print (DataFrame1)

 Name Age

0 Ahmed 35

1 Ali 17

2 Omar 25

You can retrieve data from a data frame starting from index 1 up to the

end of rows.

In [40]: DataFrame1[1:]

Out[40]: Name Age

 1 Ali 17

 2 Omar 25

You can create a data frame using a dictionary.

In [41]:import pandas as pd

 �data = {'Name':['Ahmed', 'Ali', 'Omar',

'Salwa'],'Age':[35,17,25,30]}

 dataframe2 = pd.DataFrame(data, index=[100, 101, 102, 103])

 print (dataframe2)

 Age Name

100 35 Ahmed

101 17 Ali

102 25 Omar

103 30 Salwa

Chapter 1 Introduction to Data Science with Python

59

You can select only the first two rows in a data frame.

In [42]: dataframe2[:2]

Out[42]: Age Name

 100 35 Ahmed

 101 17 Ali

You can select only the name column in a data frame.

In [43]: dataframe2['Name']

Out[43]:100 Ahmed

101 Ali

102 Omar

103 Salwa

Name: Name, dtype: object

�A Pandas Panels

A panel is a 3D container of data that can be created from different data

structures such as from a dictionary of data frames, as shown in Listing 1-31.

Listing 1-31.  Creating a Panel Using the Pandas Library

In [44]:# Creating a panel

 import pandas as pd

 import numpy as np

 �data = {'Temperature Day1' : pd.DataFrame(np.random.

randn(4, 3)),'Temperature Day2' : pd.DataFrame

(np.random.randn(4, 2))}

 p = pd.Panel(data)

 print (p['Temperature Day1'])

 0 1 2

0 1.152400 -1.298529 1.440522

Chapter 1 Introduction to Data Science with Python

60

1 -1.404988 -0.105308 -0.192273

2 -0.575023 -0.424549 0.146086

3 -1.347784 1.153291 -0.131740

�Python Lambdas and the Numpy Library
The lambda operator is a way to create small anonymous functions, in

other words, functions without names. These functions are throwaway

functions; they are just needed where they have been created. The lambda

feature is useful mainly for Lisp programmers. Lambda functions are used

in combination with the functions filter(), map(), and reduce().

Anonymous functions refer to functions that aren’t named and are

created by using the keyword lambda. A lambda is created without using

the def keyword; it takes any number of arguments and returns an

evaluated expression, as shown in Listing 1-32.

Listing 1-32.  Anonymous Function

In [34]:# Anonymous Function Definition

 �summation=lambda val1, val2: val1 + val2#Call

summation as a function

 print ("The summation of 7 + 10 = ", summation(7,10))

The summation of 7 + 10 = 17

In [46]:result = lambda x, y : x * y

 result(2,5)

Out[46]: 10

In [47]:result(4,10)

Out[47]: 40

Chapter 1 Introduction to Data Science with Python

61

�The map() Function

The map() function is used to apply a specific function on a sequence of

data. The map() function has two arguments.

r = map(func, seq)

Here, func is the name of a function to apply, and seq is the sequence

(e.g., a list) that applies the function func to all the elements of the

sequence seq. It returns a new list with the elements changed by func, as

shown in Listing 1-33.

Listing 1-33.  Using the map() Function

In [65]:def fahrenheit(T):

 return ((float(9)/5)*T + 32)

 def celsius(T):

 return (float(5)/9)*(T-32)

 Temp = (15.8, 25, 30.5,25)

 F = list (map(fahrenheit, Temp))

 C = list (map(celsius, F))

 print (F)

 print (C)

[60.44, 77.0, 86.9, 77.0]

[15.799999999999999, 25.0, 30.500000000000004, 25.0]

In [72]:Celsius = [39.2, 36.5, 37.3, 37.8]

Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)

for x in Fahrenheit:

 print(x)

102.56

97.7

99.14

100.03999999999999

Chapter 1 Introduction to Data Science with Python

62

�The filter() Function

The filter() function is an elegant way to filter out all elements of a list

for which the applied function returns true.

For instance, the function filter(func, list1) needs a function

called func as its first argument. func returns a Boolean value, in other

words, either true or false. This function will be applied to every element

of the list list1. Only if func returns true will the element of the list be

included in the result list.

The filter() function in Listing 1-34 is used to return only even

values.

Listing 1-34.  Using the filter() Function

In [79]:fib = [0,1,1,2,3,5,8,13,21,34,55]

 result = filter(lambda x: x % 2==0, fib)

 for x in result:

 print(x)

0

2

8

34

�The reduce () Function

The reduce() function continually applies the function func to a sequence

seq and returns a single value.

The reduce() function is used to find the max value in a sequence of

integers, as shown in Listing 1-35.

Chapter 1 Introduction to Data Science with Python

63

Listing 1-35.  Using the reduce() Function

In [81]: f = lambda a,b: a if (a > b) else b

reduce(f, [47,11,42,102,13])

102

In [82]: reduce(lambda x,y: x+y, [47,11,42,13])

113

�Python Numpy Package

Numpy is a Python package that stands for “numerical Python.” It is a

library consisting of multidimensional array objects and a collection of

routines for processing arrays.

The Numpy library is used to apply the following operations:

•	 Operations related to linear algebra and random

number generation

•	 Mathematical and logical operations on arrays

•	 Fourier transforms and routines for shape

manipulation

For instance, you can create arrays and perform various operations

such as adding or subtracting arrays, as shown in Listing 1-36.

Listing 1-36.  Example of the Numpy Function

In [83]:a=np.array([[1,2,3],[4,5,6]])

 b=np.array([[7,8,9],[10,11,12]])

 np.add(a,b)

Out[83]: array([[8, 10, 12], [14, 16, 18]])

In [84]:np.subtract(a,b) #Same as a-b

Out[84]: array([[-6, -6, -6], [-6, -6, -6]])

Chapter 1 Introduction to Data Science with Python

64

�Data Cleaning and Manipulation Techniques
Keeping accurate data is highly important for any data scientist.

Developing an accurate model and getting accurate predictions from

the applied model depend on the missing values treatment. Therefore,

handling missing data is important to make models more accurate and

valid.

Numerous techniques and approaches are used to handle missing data

such as the following:

•	 Fill NA forward

•	 Fill NA backward

•	 Drop missing values

•	 Replace missing (or) generic values

•	 Replace NaN with a scalar value

The following examples are used to handle the missing values in a

tabular data set:

In [31]: dataset.fillna(0) # Fill missing values with zero value

In [35]: dataset.fillna(method='pad') # Fill methods Forward

In [35]: dataset.fillna(method=' bfill') # Fill methods Backward

In [37]: dataset.dropna() # remove all missing data

Chapter 5 covers different gathering and cleaning techniques.

�Abstraction of the Series and Data Frame
A series is one of the main data structures in Pandas. It differs from lists

and dictionaries. An easy way to visualize this is as two columns of data.

The first is the special index, a lot like the dictionary keys, while the

second is your actual data. You can determine an index for a series, or

Chapter 1 Introduction to Data Science with Python

https://doi.org/10.1007/978-1-4842-4109-7_5

65

Python can automatically assign indices. Different attributes can be used

to retrieve data from a series’ iloc() and loc() attributes. Also, Python

can automatically retrieve data based on the passed value. If you pass an

object, then Python considers that you want to use the index label–based

loc(). However, if you pass an index integer parameter, then Python

considers the iloc() attribute, as indicated in Listing 1-37.

Listing 1-37.  Series Structure and Query

In [6]: import pandas as pd

 animals = ["Lion", "Tiger", "Bear"]

 pd.Series(animals)

Out[6]: 0 Lion

 1 Tiger

 2 Bear

dtype: object

You can create a series of numerical values.

In [5]: marks = [95, 84, 55, 75]

 pd.Series(marks)

Out[5]: 0 95

 1 84

 2 55

 3 75

 dtype: int64

You can create a series from a dictionary where indices are the

dictionary keys.

In [11]: quiz1 = {"Ahmed":75, "Omar": 84, "Salwa": 70}

 q = pd.Series(quiz1)

 q

Chapter 1 Introduction to Data Science with Python

66

Out[11]: Ahmed 75

 Omar 84

 Salwa 70

 dtype: int64

The following examples demonstrate how to query a series.

You can query a series using a series label or the lock() attribute.

In [13]: q.loc['Ahmed']

Out[13]: 75

In [20]: q['Ahmed']

Out[20]: 75

You can query a series using a series index or the ilock() attribute.

In [19]: q.iloc[2]

Out[19]: 70

In [21]: q[2]

Out[21]: 70

You can implement a Numpy operation on a series.

In [25]:s = pd.Series([70,90,65,25, 99])

 s

Out[25]:0 70

 1 90

 2 65

 3 25

 4 99

 dtype: int64

Chapter 1 Introduction to Data Science with Python

67

In [27]:total =0

 for val in s:

 total += val

 print (total)

349

You can get faster results by using Numpy functions on a series.

In [28]: import numpy as np

 total = np.sum(s)

 print (total)

349

It is possible to alter a series to add new values; it is automatically

detected by Python that the entered values are not in the series, and hence

it adds it to the altered series.

In [29]:s = pd.Series ([99,55,66,88])

 s.loc['Ahmed'] = 85

 s

Out[29]: 0 99

 1 55

 2 66

 3 88

 Ahmed 85

 dtype: int64

You can append two or more series to generate a larger one, as shown

here:

In [32]: test = [95, 84, 55, 75]

 marks = pd.Series(test)

 s = pd.Series ([99,55,66,88])

 s.loc['Ahmed'] = 85

Chapter 1 Introduction to Data Science with Python

68

NewSeries = s.append(marks)

NewSeries

Out[32]: 0 99

 1 55

 2 66

 3 88

 Ahmed 85

 0 95

 1 84

 2 55

 3 75

 dtype: int64

The data frame data structure is the main structure for data collection

and processing in Python. A data frame is a two-dimensional series object,

as shown in Figure 1-8, where there’s an index and multiple columns of

content each having a label.

Figure 1-8.  Data frame virtual structure

Chapter 1 Introduction to Data Science with Python

69

Data frame creation and queries were discussed earlier in this chapter

and will be discussed again in the context of data collection structures in

Chapter 3.

�Running Basic Inferential Analyses
Python provides numerous libraries for inference and statistical analysis such

as Pandas, SciPy, and Numpy. Python is an efficient tool for implementing

numerous statistical data analysis operations such as the following:

•	 Linear regression

•	 Finding correlation

•	 Measuring central tendency

•	 Measuring variance

•	 Normal distribution

•	 Binomial distribution

•	 Poisson distribution

•	 Bernoulli distribution

•	 Calculating p-value

•	 Implementing a Chi-square test

Linear regression between two variables represents a straight line

when plotted as a graph, where the exponent (power) of both of the

variables is 1. A nonlinear relationship where the exponent of any variable

is not equal to 1 creates a curve shape.

Let’s use the built-in Tips data set available in the Seaborn Python

library to find linear regression between a restaurant customer’s total bill

value and each bill’s tip value, as shown in Figure 1-9. The function in

Seaborn to find the linear regression relationship is regplot.

Chapter 1 Introduction to Data Science with Python

https://doi.org/10.1007/978-1-4842-4109-7_3

70

In [40]:import seaborn as sb

 from matplotlib import pyplot as plt

 df = sb.load_dataset('tips')

 sb.regplot(x = "total_bill", y = "tip", data = df)

 plt.xlabel('Total Bill')

 plt.ylabel('Bill Tips')

 plt.show()

Correlation refers to some statistical relationship involving

dependence between two data sets, such as the correlation between the

price of a product and its sales volume.

Let’s use the built-in Iris data set available in the Seaborn Python library

and try to measure the correlation between the length and the width of the

sepals and petals of three species of iris, as shown in Figure 1-10.

Figure 1-9.  Regression analysis

Chapter 1 Introduction to Data Science with Python

71

In [42]: import matplotlib.pyplot as plt

 import seaborn as sns

 df = sns.load_dataset('iris')

 sns.pairplot(df, kind="scatter")

 plt.show()

Figure 1-10.  Correlation analysis

Chapter 1 Introduction to Data Science with Python

72

In statistics, variance is a measure of how dispersed the values are from

the mean value. Standard deviation is the square root of variance. In other

words, it is the average of the squared difference of values in a data set

from the mean value. In Python, you can calculate this value by using the

function std() from the Pandas library.

In [58]: import pandas as pd

d = {

'Name': pd.Series(['Ahmed','Omar','Ali','Salwa','Majid',

 'Othman','Gameel','Ziad','Ahlam','Zahrah',

 'Ayman','Alaa']),

'Age': pd.Series([34,26,25,27,30,54,23,43,40,30,28,46]),

'Height':pd.Series([114.23,173.24,153.98,172.0,153.20,164.6,

 183.8,163.78,172.0,164.8])}

df = pd.DataFrame(d) #Create a DataFrame

print (df.std())# Calculate and print the standard deviation

Age 9.740574

Height 18.552823

Out[46]: [Text(0,0.5,'Frequency'), Text(0.5,0,'Binomial')]

You can use the describe() method to find the full description of a

data frame set, as shown here:

In [59]: print (df.describe())

 Age Height

count 12.000000 12.000000

mean 33.833333 164.448333

std 9.740574 18.552823

min 23.000000 114.230000

25% 26.750000 161.330000

Chapter 1 Introduction to Data Science with Python

73

50% 30.000000 168.400000

75% 40.750000 173.455000

max 54.000000 183.800000

Central tendency measures the distribution of the location of values of

a data set. It gives you an idea of the average value of the data in the data

set and an indication of how widely the values are spread in the data set.

The following example finds the mean, median, and mode values of

the previously created data frame:

In [60]: print ("Mean Values in the Distribution")

 print (df.mean())

 print ("*******************************")

 print ("Median Values in the Distribution")

 print (df.median())

 print ("*******************************")

 print ("Mode Values in the Distribution")

 print (df['Height'].mode())

Mean Values in the Distribution

Age 33.833333

Height 164.448333

dtype: float64

Median Values in the Distribution

Age 30.0

Height 168.4

dtype: float64

Mode Values of height in the Distribution

0 172.0

dtype: float64

Chapter 1 Introduction to Data Science with Python

74

�Summary
This chapter introduced the data science field and the use of Python

programming for implementation. Let’s recap what was covered in this

chapter.

–– The data science main concepts and life cycle

–– �The importance of Python programming and its main

libraries used for data science processing

–– �Different Python data structure use in data science

applications

–– How to apply basic Python programming techniques

–– �Initial implementation of abstract series and data frames

as the main Python data structure

–– Data cleaning and its manipulation techniques

–– Running basic inferential statistical analyses

The next chapter will cover the importance of data visualization in

business intelligence and much more.

�Exercises and Answers

	 1.	 Write a Python script to prompt users to enter

two values; then perform the basic arithmetical

operations of addition, subtraction, multiplication,

and division on the values.

Answer:

In [2]: # Store input numbers:

num1 = input('Enter first number: ')

Chapter 1 Introduction to Data Science with Python

75

num2 = input('Enter second number: ')

sumval = float(num1) + float(num2) # Add two numbers

minval = float(num1) - float(num2) # Subtract two numbers

mulval = float(num1) * float(num2) # Multiply two numbers

divval = float(num1) / float(num2) #Divide two numbers

Display the sum

print('The sum of {0} and {1} is {2}'.format(num1, num2,

sumval))

Display the subtraction

print('The subtraction of {0} and {1} is {2}'.format(num1, num2,

minval))

Display the multiplication

print('The multiplication of {0} and {1} is {2}'.format(num1,

num2, mulval))

Display the division

print('The division of {0} and {1} is {2}'.format(num1, num2,

divval))

Enter first number: 10

Enter second number: 5

The sum of 10 and 5 is 15.0

The subtraction of 10 and 5 is 5.0

The multiplication of 10 and 5 is 50.0

The division of 10 and 5 is 2.0

	 2.	 Write a Python script to prompt users to enter

the lengths of a triangle sides. Then calculate the

semiperimeters. Calculate the triangle area and

display the result to the user. The area of a triangle is

(s*(s-a)*(s-b)*(s-c))-1/2.

Chapter 1 Introduction to Data Science with Python

76

Answer:

In [3]:a = float(input('Enter first side: '))

 b = float(input('Enter second side: '))

 c = float(input('Enter third side: '))

 s = (a + b + c) / 2 # calculate the semiperimeter

 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 # calculate the area

 print('The area of the triangle is %0.2f' %area)

Enter first side: 10

Enter second side: 9

Enter third side: 7

The area of the triangle is 30.59

	 3.	 Write a Python script to prompt users to enter the

first and last values and generate some random

values between the two entered values.

Answer:

In [7]:import random

a = int(input('Enter the starting value : '))

b = int(input('Enter the end value : '))

print(random.randint(a,b))

random.sample(range(a, b), 3)

Enter the starting value : 10

Enter the end value : 100

14

Out[7]: [64, 12, 41]

	 4.	 Write a Python program to prompt users to enter a

distance in kilometers; then convert kilometers to

miles, where 1 kilometer is equal to 0.62137 miles.

Display the result.

Chapter 1 Introduction to Data Science with Python

77

Answer:

In [9]: # convert kilometers to miles

kilometers = float(input('Enter the distance in kilometers: '))

conversion factor

Miles = kilometers * 0.62137

print('%0.2f kilometers is equal to %0.2f miles'

 %(kilometers, Miles))

Enter the distance in kilometers: 120

120.00 kilometers is equal to 74.56 miles

	 5.	 Write a Python program to prompt users to enter a

Celsius value; then convert Celsius to Fahrenheit,

where T(°F) = T(°C) x 1.8 + 32. Display the result.

Answer:

In [11]: # convert Celsius to Fahrenheit

 Celsius = float(input('Enter temperature in Celsius: '))

 # conversion factor

 Fahrenheit = (Celsius * 1.8) + 32

 print('%0.2f Celsius is equal to %0.2f Fahrenheit'

 %(Celsius, Fahrenheit))

Enter temperature in Celsius: 25

25.00 Celsius is equal to 77.00 Fahrenheit

	 6.	 Write a program to prompt users to enter their

working hours and rate per hour to calculate gross

pay. The program should give the employee 1.5

times the hours worked above 30 hours. If Enter

Hours is 50 and Enter Rate is 10, then the calculated

payment is Pay: 550.0.

Chapter 1 Introduction to Data Science with Python

78

Answer:

In [6]:Hflage=True

 Rflage=True

 while Hflage & Rflage :

 hours = input ('Enter Hours:')

 try:

 hours = int(hours)

 Hflage=False

 except:

 print ("Incorrect hours number !!!!")

 try:

 rate = input ('Enter Rate:')

 rate=float(rate)

 Rflage=False

 except:

 print ("Incorrect rate !!")

 if hours>40:

 pay= 40 * rate + (rate*1.5) * (hours - 40)

 else:

 pay= hours * rate

 print ('Pay:',pay)

Enter Hours: 50

Enter Rate: 10

Pay: 550.0

	 7.	 Write a program to prompt users to enter a value;

then check whether the entered value is positive or

negative value and display a proper message.

Chapter 1 Introduction to Data Science with Python

79

Answer:

In [1]: Val = float(input("Enter a number: "))

 if Val > 0:

 print("{0} is a positive number".format(Val))

 elif Val == 0:

 print("{0} is zero".format(Val))

 else:

 print("{0} is negative number".format(Val))

Enter a number: -12

-12.0 is negative number

	 8.	 Write a program to prompt users to enter a value;

then check whether the entered value is odd or even

and display a proper message.

Answer:

In [4]:# Check if a Number is Odd or Even

 val = int(input("Enter a number: "))

 if (val % 2) == 0:

 print("{0} is an Even number".format(val))

 else:

 print("{0} is an Odd number".format(val))

Enter a number: 13

13 is an Odd number

	 9.	 Write a program to prompt users to enter an age; then

check whether each person is a child, a teenager, an

adult, or a senior. Display a proper message.

Chapter 1 Introduction to Data Science with Python

80

Age Category

< 13 Child

13 to 17 Teenager

18 to 59 Adult

> 59 Senior

Answer:

In [6]:age = int(input("Enter age of a person : "))

 if(age < 13):

 print("This is a child")

 elif(age >= 13 and age <=17):

 print("This is a teenager")

 elif(age >= 18 and age <=59):

 print("This is an adult")

 else:

 print("This is a senior")

Enter age of a person : 40

This is an adult

	 10.	 Write a program to prompt users to enter a car’s

speed; then calculate fines according to the

following categories, and display a proper message.

Speed Limit Fine Value

< 80 0

81 to 99 200

100 to 109 350

> 109 500

Chapter 1 Introduction to Data Science with Python

81

Answer:

In [7]:Speed = int(input("Enter your car speed"))

 if(Speed < 80):

 print("No Fines")

 elif(Speed >= 81 and Speed <=99):

 print("200 AE Fine ")

 elif(Speed >= 100 and Speed <=109):

 print("350 AE Fine ")

 else:

 print("500 AE Fine ")

Enter your car speed120

500 AE Fine

	 11.	 Write a program to prompt users to enter a

year; then find whether it’s a leap year. A year is

considered a leap year if it’s divisible by 4 and 100

and 400. If it’s divisible by 4 and 100 but not by 400,

it’s not a leap year. Display a proper message.

Answer:

In [11]:year = int(input("Enter a year: "))

 if (year % 4) == 0:

 if (year % 100) == 0:

 if (year % 400) == 0:

 �print("{0} is a leap year".

format(year))

 else:

 �print("{0} is not a leap year".

format(year))

Chapter 1 Introduction to Data Science with Python

82

 else:

 print("{0} is a leap year".format(year))

 else:

 print("{0} is not a leap year".format(year))

Enter a year: 2000

2000 is a leap year

	 12.	 Write a program to prompt users to enter a

Fibonacci sequence. The Fibonacci sequence is

the series of numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

The next number is found by adding the two

numbers before it. For example, the 2 is found by

adding the two numbers before it (1+1). Display a

proper message.

Answer:

In [14]:nterms = int(input("How many terms you want? "))

 # first two terms

 n1 = 0

 n2 = 1

 count = 2

 # check if the number of terms is valid

 if nterms <= 0:

 print("Please enter a positive integer")

 elif nterms == 1:

 print("Fibonacci sequence:")

 print(n1)

Chapter 1 Introduction to Data Science with Python

83

 else:

 print("Fibonacci sequence:")

 �print(n1,",",n2,end=', ') # end=', ' is used

to continue printing in the same line

 while count < nterms:

 nth = n1 + n2

 print(nth,end=' , ')

 # update values

 n1 = n2

 n2 = nth

 count += 1

How many terms you want? 8

Fibonacci sequence:

0 , 1, 1 , 2 , 3 , 5 , 8 , 13 ,

Chapter 1 Introduction to Data Science with Python

	Chapter 1: Introduction to Data Science with Python
	The Stages of Data Science
	Why Python?
	Basic Features of Python
	Python Learning Resources

	Python Environment and Editors
	Portable Python Editors (No Installation Required)
	Azure Notebooks
	Offline and Desktop Python Editors

	The Basics of Python Programming
	Basic Syntax
	Lines and Indentation
	Multiline Statements
	Quotation Marks in Python
	Multiple Statements on a Single Line
	Read Data from Users

	Declaring Variables and Assigning Values
	Multiple Assigns
	Variable Names and Keywords
	Statements and Expressions

	Basic Operators in Python
	Arithmetic Operators
	Relational Operators
	Assign Operators
	Logical Operators

	Python Comments
	Formatting Strings
	Conversion Types
	The Replacement Field, {}
	The Date and Time Module
	Time Module Methods
	Python Calendar Module

	Fundamental Python Programming Techniques
	Selection Statements
	Iteration Statements
	The Use of Break, Continues, and Pass Statements
	try and except
	String Processing
	String Special Operators
	String Slicing and Concatenation
	String Conversions and Formatting Symbols
	Loop Through String
	Python String Functions and Methods
	The in Operator
	Parsing and Extracting Strings

	Tabular Data and Data Formats
	Python Pandas Data Science Library
	A Pandas Series
	A Pandas Data Frame
	A Pandas Panels

	Python Lambdas and the Numpy Library
	The map() Function
	The filter() Function
	The reduce () Function
	Python Numpy Package

	Data Cleaning and Manipulation Techniques
	Abstraction of the Series and Data Frame
	Running Basic Inferential Analyses
	Summary
	Exercises and Answers

